Given:
• Diameter, D = 0.0444 m
,• Distance, x = 0.00718 m
,• d = 550 m
Let's find the wavelength in nanometers.
Apply the formula:
[tex]sin\theta=\frac{1.22\lambda}{D}[/tex]Where:
λ is the wavelength,
Also, we have the formula:
[tex]\begin{gathered} sin\theta=\frac{x}{d} \\ \\ sin\theta=\frac{0.00718}{550} \\ \\ sin\theta=1.30545\times10^{-5}\text{ m} \end{gathered}[/tex]Now, plug in 1.30545 x 10⁻⁵ m for sinθ in the first equation.
Where:
D = 0.0444
Thus, we have:
[tex]\begin{gathered} sin\theta=\frac{1.22\lambda}{D} \\ \\ 1.30545\times10^{-5}=\frac{1.22\lambda}{0.0444} \\ \\ \lambda=\frac{1.30545\times10^{-5}*0.0444}{1.22} \\ \\ \lambda=\frac{5.796\times10^{-7}}{1.22} \\ \\ \lambda=4.751\times10^{-7}m \end{gathered}[/tex]In nanometers, the wavelength will be:
[tex]\begin{gathered} \lambda=475.1\times10^{-9}m \\ \\ \lambda=475.1\text{ nm} \end{gathered}[/tex]Therefore, the wavelength in nanometers is 475.1 nm.
• ANSWER:
475.1 nm