Does the table below show a proportional relationship? If so, what is the value of y when x is 10? If not, explain why not.

Answer:
• Yes, the table shows a proportional relationship.
,• When x=10, y=5
Explanation:
If y is proportionally related to x, then the equation of proportionality is given as:
[tex]\begin{gathered} y=kx \\ k=\text{ the constant of proportion} \end{gathered}[/tex]From the table:
When x=5, y=2.5
[tex]\begin{gathered} 2.5=5k \\ k=\frac{2.5}{5} \\ k=0.5 \end{gathered}[/tex]When x=8, y=4
[tex]\begin{gathered} 4=8k \\ k=\frac{4}{8} \\ k=0.5 \end{gathered}[/tex]Since the values of k in both cases are the same, the table shows a proportional relationship.
When x=10
[tex]\begin{gathered} y=kx \\ y=0.5\times10 \\ y=5 \end{gathered}[/tex]The value of y when x=10 is 5.