In order to simplify this expression, first let's put every quadratic polynomial in the factored form:
[tex]\begin{gathered} 6p^2+p-12=6(x+\frac{3}{2})(x-\frac{4}{3}) \\ 8p^2+18p+9=8(x+\frac{3}{2})(x+\frac{3}{4}) \\ 6p^2-11p+4=6(x-\frac{1}{2})(x-\frac{4}{3}) \\ 2p^2+11p-6=2(x+6)(x-\frac{1}{2}) \end{gathered}[/tex]
So, switching the division into a multiplication and inverting the second fraction, we have:
[tex]\begin{gathered} \frac{6(x+\frac{3}{2})(x-\frac{4}{3})_{}_{}}{8(x+\frac{3}{2})(x+\frac{3}{4})}\cdot\frac{2(x+6)(x-\frac{1}{2})}{6(x-\frac{1}{2})(x-\frac{4}{3})} \\ =\frac{3(x-\frac{4}{3})}{4(x+\frac{3}{4})}\cdot\frac{(x+6)}{3(x-\frac{4}{3})} \\ =\frac{x+6}{4(x+\frac{3}{4})} \\ =\frac{x+6}{4x+3} \end{gathered}[/tex]
Therefore the numerator is x + 6 and the denominator is 4x + 3.