Given the exponential function:
[tex]f(x)=2^x+1[/tex]Let's find a list of ordered pairs which represent points on tyhe graph of this given function.
Let's evaluate f(x) for different values of x.
[tex]\begin{gathered} when_{\text{ }}x=1\Longrightarrow f(1)=2^1+1=2+1=3 \\ \\ when_{\text{ }}x=2\Longrightarrow f(2)=2^2+1=4+1=5 \\ \\ when_{\text{ }}x=3\Longrightarrow f(3)=2^3+1=8+1=9 \end{gathered}[/tex]Thus, we have the soluttions:
When x = 1, f(x) = 3
When x = 2, f(x) = 5
When x = 3, f(x) = 9
Therefore, a possible list of ordered pairs for the function are:
(x, y) ==> (1, 3), (2, 5), (3, 9)
ANSWER:
• (1, 3)
,• (2, 5)
,• (3, 9)