Respuesta :

Given:

There are given the graph of the line.

Explanation:

To write the equation of the line, first, we need to select two points from the graph:

So,

The points is:

[tex](0,4),(6,6)[/tex]

Now,

For the equation, first, find the slope of the line from the given points:

So,

Fro the formula to find the slope:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Where,

[tex]x_1=0,y_1=4,x_2=6,y_2=6[/tex]

Then,

Put all the given values into the above formula

So,

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{6_{}-4_{}}{6_{}-0} \\ m=\frac{2}{6} \\ m=\frac{1}{3} \end{gathered}[/tex]

Now,

From the formula of slop-point form:

[tex]y-y_1=m(x-x_1)[/tex]

Where,

[tex]x_1=0,y_1=4,m=\frac{1}{3}[/tex]

Then,

Put all values into the above formula:

So,

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-4_{}=\frac{1}{3}(x-0) \\ y-4=\frac{1}{3}x \\ 3y-12=x \\ 3y-12-x=0 \\ 3y-x-12=0 \\ 3y=x+12 \\ y=\frac{1}{3}x+4 \end{gathered}[/tex]

Final answer:

Hence, the equation of the line is shown below:

[tex]y=\frac{1}{3}x+4[/tex]

RELAXING NOICE
Relax