Given:
Number of pink socks = 4 pairs
Number of white socks = 2 pairs
Number of black socks = 7 pairs
Let's find the probability that if you choose at random without replacement you will choose a black pair and then a white pair.
Where:
Total pairs = 4 + 2 + 7 = 13 pairs
To find the probability, we have:
[tex]P(black\text{ first\rparen= }\frac{\text{ number of black pairs}}{total\text{ pairs}}=\frac{7}{13}[/tex]Now, for the probability you choose a white pair next given that the black was not replaced, we have:
[tex]P(white)=\frac{number\text{ of white pairs}}{total\text{ pairs - 1}}=\frac{2}{13-1}=\frac{2}{12}=\frac{1}{6}[/tex]Now, for the total probability, we have:
[tex]\begin{gathered} P=P(black\text{ first\rparen * P\lparen white next\rparen} \\ \\ P=\frac{7}{13}*\frac{1}{6} \\ \\ P=\frac{7}{78} \end{gathered}[/tex]Therefore, the probability is 7/78.
ANSWER: a
[tex]\frac{7}{78}[/tex]