Use the concept of the definite integral to find the total area between the graph off(x) and thex-axis, by taking the limit of the associated right Riemann sum. Write the exact answer. Do not round. (Hint: Extra care is needed on those intervals wheref(x) < 0. Remember that the definite integral represents a signed area.)

Use the concept of the definite integral to find the total area between the graph offx and thexaxis by taking the limit of the associated right Riemann sum Writ class=

Respuesta :

[tex]\int ^2_{-2}14x^2-56dx[/tex]

Solution

[tex]\begin{gathered} \int ^2_{-2}14x^2dx-\int ^2_{-2}56dx \\ \int ^2_{-2}14x^2dx=\lbrack\frac{14(2)^3}{3}\rbrack-\lbrack\frac{14(-2)^3}{3}\rbrack \\ \\ \\ =\lbrack\frac{14(8)^{}}{3}\rbrack-\lbrack\frac{14(-8)^{}}{3}\rbrack \\ =\frac{112}{3}+\frac{112}{3} \\ =\frac{224}{3} \\ \\ \\ \int ^2_{-2}56dx=56x \\ \int ^2_{-2}56dx=56(2)-56(-2) \\ \\ \int ^2_{-2}56dx=112+112 \\ \\ \int ^2_{-2}56dx=224 \end{gathered}[/tex]

Now

[tex]\begin{gathered} \int ^2_{-2}14x^2dx-\int ^2_{-2}56dx \\ \frac{224}{3}-224 \\ \\ \frac{224}{3}-\frac{224}{1} \\ -\frac{448}{3} \end{gathered}[/tex]

The final answer is

[tex]-\frac{448}{3}[/tex]

RELAXING NOICE
Relax