The one-to-one functions g and h are defined as follows.g={(-9, - 4). (4. 1), (5, 8), (7, 5)}h(x)=2x-9Find the following.

Ok, so
We got the function g:
[tex]g=\mleft\lbrace(-9,-4\mright),(4,1),(5,8),(7,5)\}[/tex]First, let's find
[tex]g^{-1}(5)[/tex]The points we're going to analyze are the next one:
As you can see, the value of x which makes that g(x) equals to 5, is 7.
So,
[tex]g^{-1}(5)=7[/tex]Now, we have h(x):
[tex]h(x)=2x-9[/tex]To find the inverse, we solve that equation for x:
[tex]\begin{gathered} y=2x-9 \\ y+9=2x \\ x=\frac{y+9}{2} \\ \\ h^{-1}(x)=\frac{x+9}{2} \end{gathered}[/tex]So that's the inverse of h(x).
Finally, we have to find:
[tex](h^{-1}\circ h)(2)[/tex]This is the same that if we write:
[tex]h^{-1}(h(2))[/tex]So we're going to evaluate the inverse function, in h(2).
We can find h(2) replacing:
[tex]\begin{gathered} h(x)=2x-9 \\ h(2)=2(2)-9 \\ h(2)=-5 \end{gathered}[/tex]Now, evaluate:
[tex]h^{-1}(-5)[/tex]This is:
[tex]\begin{gathered} h^{-1}(x)=\frac{x+9}{2} \\ h^{-1}(-5)=\frac{-5+9}{2} \\ h^{-1}(-5)=\frac{4}{2}=2 \end{gathered}[/tex]Therefore,
[tex](h^{-1}\circ h)(2)=2[/tex]