We have the next function
[tex]p(x)=\frac{1}{\sqrt[]{x}}[/tex][tex]m(x)=x^2-4[/tex]
For the 1.
[tex]\frac{p(x)}{m(x)}=\frac{\frac{1}{\sqrt[]{x}}}{x^2-4}[/tex]
We simplify
[tex]\frac{p(x)}{m(x)}=\frac{1}{\sqrt[]{x}(x^2-4)}[/tex]
The domain is the set of all possible values that x can have in this case the domain is
[tex]\: \mleft(0,\: 2\mright)\cup\mleft(2,\: \infty\: \mright)[/tex]
The range is the set of possible values that the function can have in this case the range is
[tex]\: \: (-\infty\: ,\: -\frac{5\sqrt[4]{5}}{16\sqrt{2}}\rbrack\cup\mleft(0,\infty\mright)[/tex]
[tex](-\infty\: ,\: -0.3304\rbrack\cup(0,\: \infty\: )[/tex]
For 2.
[tex]p(m(x))=\frac{1}{\sqrt[]{x^2-4}}[/tex]
We need to remember that we can have negative values inside a square root and we can divide between 0, therefore the domain is
[tex]\mleft(-\infty\: ,\: -2\mright)\cup\mleft(2,\: \infty\: \mright)[/tex]
the range is
[tex]\mleft(0,\: \infty\: \mright)[/tex]
For 3.
[tex]m(p(x))=(\frac{1}{\sqrt[]{x}})^2-4[/tex]
we simplify
[tex]m(p(x))=\frac{1}{x}-4[/tex]
We need to remember the fact that we can divide between 0 therefore the domain is
[tex]\: \mleft(-\infty\: ,\: 0\mright)\cup\mleft(0,\: \infty\: \mright)[/tex]
For the range we have
[tex]\: \mleft(-\infty\: ,\: -4\mright)\cup\mleft(-4,\: \infty\: \mright)[/tex]