Round side lengths to the nearest tenth and round angle measures to the nearest degree. Include a labelled diagram of the triangle and show all your work.∡P=80°, r=8, p=10

Respuesta :

Answer:

Explanation:

Let us draw the triangle first.

Now, the law of cosines gives

[tex]10^2=8^2+x^2-2\cdot8\cdot x\cos (80^o)[/tex]

simplifying the above gives

[tex]100=64+x^2-16x\cos (80^o)[/tex]

subtracting 64 from both sides gives

[tex]100-64=x^2-16x\cos (80^o)[/tex][tex]\Rightarrow36=x^2-16x\cos (80^o)[/tex]

Rewriting the above in a more familiar form gives

[tex]x^2-16\cos (80^o)x-36=0[/tex]

which is a quadratic equation.

Using the quadratic formula we solve for x and get

[tex]x=\frac{16\cos (80^o)\pm\sqrt[]{(16\cos (80^o))^2-4(1)(-36)}}{2(1)}[/tex]

whose positive solution is

[tex]\boxed{x=7.54791\ldots}[/tex]

Next, we find the angle Θ.

To find Θ, we use the law of sines.

The law of sines in our case gives

[tex]\frac{10}{\sin(80^o)}=\frac{8}{\sin \theta}[/tex]

cross multipication gives

[tex]10\sin \theta=8\sin (80^o)[/tex]

dividing both sides by 10 gives

[tex]\sin \theta=\frac{8\sin (80^o)}{10}[/tex]

With the help of a calculator, we evaluate the right-hand side and get

[tex]\sin \theta=0.787846[/tex]

taking the inverse sine of both sides gives

[tex]\begin{gathered} \boxed{\theta=51.984688^o\ldots^{}} \\ \end{gathered}[/tex]

Last but not least, we find the value of α.

To find α, we use the fact that the sum of internal angles of a triangle must be 180°.

Therefore, we have

[tex]\alpha+\theta+80^o=180^o[/tex]

putting in the value of Θ gives

[tex]\alpha+51.984688^o+80^o=180^o[/tex]

simplifying and solving for α gives

[tex]\boxed{\alpha=48.015^o}[/tex]

Hence, our angle and side length measures rounded to the nearest tenth are:

[tex]\begin{gathered} x=7.6 \\ \theta=52.0^o \\ \alpha=48.0^o \end{gathered}[/tex]

Ver imagen ArnoldA683288
RELAXING NOICE
Relax