SOLUTION
We will use the formula
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ where \\ P=money\text{ invested = \$7,000} \\ r=APR=5\%=\frac{5}{100}=0.05 \\ t=time\text{ in years = 16} \\ n=number\text{ of compoundings = monthly =12} \\ A=amount=balance\text{ in the account after t years } \end{gathered}[/tex]Applying we have
[tex]\begin{gathered} A=7,000(1+\frac{0.05}{12})^{12\times16} \\ A=7,000(1+0.0041667)^^{192} \\ A=7,000(1.0041667)^{192} \\ A=15,552.92 \end{gathered}[/tex]Hence the answer is $15,552.92