Solution
Step 1
Write the equation
[tex]h(x)\text{ = x}^2\text{ + 3x - 18}[/tex]
Step 2
Use the factorization method
[tex]\begin{gathered} Equate\text{ the function to zero to find the roots.} \\ x^2\text{ + 3x - 18 = 0} \\ x^2\text{ + 6x - 3x - 18 = 0} \\ x(x\text{ + 6\rparen -3\lparen x + 6\rparen = 0} \\ (x\text{ + 6\rparen\lparen x - 3\rparen = 0} \\ \text{x + 6 = 0, x - 3 = 0} \\ x\text{ = -6, x = 3} \end{gathered}[/tex]
Step 3
Use the quadratic formula to find the roots of the function
[tex]\begin{gathered} \text{From y = ax}^2\text{ + bx + c} \\ \text{a =1, b = 3 , c = -18} \\ \text{x = }\frac{-b\pm\sqrt{b^2\text{ - 4ac}}}{2a} \\ \text{x = }\frac{-3\pm\sqrt{3^2\text{ - 4}\times1\times(-18)}}{2\times1} \\ \text{x = }\frac{-3\text{ }\pm\sqrt{9\text{ + 72}}}{2} \\ x\text{ = }\frac{-3\text{ }\pm\text{ }\sqrt{81}}{2} \\ \text{x = }\frac{-3\text{ }\pm\text{ 9}}{2} \\ \text{x = }\frac{-3-9}{2}\text{ , x = }\frac{-3+9}{2} \\ \text{x = -6 , x = 3} \end{gathered}[/tex]