The line segment has points (6,-3) and (2,5).
With these ponts we must find the middle point. Generally, this is given by
[tex]\text{midpoint}=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]where
[tex]\begin{gathered} (x_1,y_1)=\mleft(6,-3\mright) \\ (x_2,y_2)=(2,5) \end{gathered}[/tex]By substituying these point into the formula, we have
[tex]\begin{gathered} \text{midpoint}=(\frac{6+2}{2},\frac{-3+5}{2}) \\ \text{midpoint}=(\frac{8}{2},\frac{2}{2}) \\ \text{midpoint}=(4,1) \end{gathered}[/tex]The perpendicular bisector must pass through point (4,1) and must have a perpendicular slope to the given
line segment. This line segment has slope:
[tex]\begin{gathered} m=\frac{5-(-3)}{2-6} \\ m=\frac{5+3}{-4} \\ m=-\frac{8}{4} \\ m=-2 \end{gathered}[/tex]hence, the perpendicular bisector has the "negative reciprocal" value of m. That is,
[tex]m_p=-\frac{1}{m}[/tex]therefore, our perpendicular bisector has slope:
[tex]\begin{gathered} m_p=-\frac{1}{-2} \\ \text{hence, } \\ m_p=\frac{1}{2} \end{gathered}[/tex]Finally, the perpendicular bisector has the form:
[tex]y=m_px+b[/tex]we know the slope mp. The y-intercept b can be computed by means of the middle point (4,1).
This can be done as
[tex]\begin{gathered} y=m_px+b\text{ implies} \\ 1=\frac{1}{2}(4)+b \\ 1=2+b \\ b=1-2 \\ b=-1 \end{gathered}[/tex]Therefore, the perpendicular bisector is
[tex]y=\frac{1}{2}x-1[/tex]