The equation is given as
[tex](u+2)^2-8=0[/tex]Before we begin solving, we need to expand the equation:
[tex]\begin{gathered} (u+2)(u+2)-8=0 \\ u^2+2x+2x+4-8=0 \\ u^2+4x-4=0 \end{gathered}[/tex]We can solve the equation using the quadratic formula:
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]where
[tex]\begin{gathered} a=1 \\ b=4 \\ c=-4 \end{gathered}[/tex]Substituting, we have
[tex]\begin{gathered} u=\frac{-4\pm\sqrt[]{4^2-(4\times1\times-4)}}{2\times1} \\ u=\frac{-4\pm\sqrt[]{32}}{2} \end{gathered}[/tex]Therefore, we can calculate the values of u to be
[tex]\begin{gathered} u=\frac{-4+\sqrt[]{32}}{2} \\ u=-2+2\sqrt[]{2} \end{gathered}[/tex]or
[tex]\begin{gathered} u=\frac{-4-\sqrt[]{32}}{2} \\ u=-2-2\sqrt[]{2} \end{gathered}[/tex]Therefore, the roots are given as
[tex]u=\mleft\lbrace-2+2\sqrt[]{2},-2-2\sqrt[]{2}\mright\rbrace[/tex]