6It is given that,
[tex]\begin{gathered} n\text{ = 250} \\ p=\text{ 60\% = 0.6} \\ \\ \end{gathered}[/tex]
The mean is calculated as,
[tex]\begin{gathered} Mean\text{ = n }\times p \\ Mean\text{ = 250 }\times\text{ 0.6} \\ Mean\text{ = 150} \end{gathered}[/tex]
Standard deviation is calculated as,
[tex]\begin{gathered} Standard\text{ deviation = }\sqrt{np(1-p)} \\ Standard\text{ deviation = }\sqrt{250\times0.60\times(1-0.6)} \\ Standard\text{ deviation = }\sqrt{250\times0.60\times0.4} \end{gathered}[/tex]
Simplifying further,
[tex]\begin{gathered} Standard\text{ deviation = }\sqrt{60} \\ Standard\text{ deviation = 7.746} \end{gathered}[/tex]
Thus the required answer is,
[tex]\begin{gathered} Mean\text{ = 150} \\ Standard\text{ deviation = 7.746} \end{gathered}[/tex]