The function that models the hight of an object after some time t is:
[tex]h(t)=(49+4.9t)(10-t)[/tex]a) when the object hits the ground the hiht will be equal to 0 so we replace and slve for t:
[tex]0=(49+49t)(10-t)[/tex]and solving for t will be:
[tex]\begin{gathered} 0=490-49t+490t-49t^2 \\ 0=10-t+10t-t^2 \\ t^2-9t-10=0 \end{gathered}[/tex]and we solve it with the cuadratic function so:
[tex]\begin{gathered} t=\frac{9\pm\sqrt[]{9^2-4(1)(-10)}}{2(1)} \\ t=\frac{9\pm\sqrt[]{81+40}}{2} \\ t=\frac{9\pm\sqrt[]{121}}{2} \\ t_1=\frac{9+11}{2} \\ t_1=\frac{20}{2} \\ t_1=10 \end{gathered}[/tex]it takes 10 second to reach the ground.
b) to find the hight the object was drop we can replace t=0 that is the exact tiem whre the object was dropt so:
[tex]\begin{gathered} h=(49+4.9(0))(10-(0)) \\ h=49\cdot10 \\ h=490 \end{gathered}[/tex]