Respuesta :

Exponents

We know that the negative exponents exchange the order of the fraction. For example,

[tex]\frac{1}{3^{-4}}=3^4[/tex]

If the exponent 4 was negative down, when it is up it is positive.

Then,

[tex]\frac{3^3}{3^{-4}}=3^3\cdot3^4[/tex]

When two exponents with the same base are multiplying their exponents are added, then

[tex]3^3\cdot3^4=3^{3+4}=3^7[/tex]

when one is the dividing the other, their exponents are subtracted:

[tex]\frac{3^3}{3^{-4}}=3^{3-(-4)}=3^{3+4}=3^7[/tex]

In all the options we have 3⁷:

[tex]\begin{gathered} \frac{3^7}{3^0}=3^{7-0}=3^7 \\ 3^3\cdot3^4=3^{3+4}=3^7 \\ 3\cdot3^6=3^{1+6}=3^7 \end{gathered}[/tex]

But, for the first option:

[tex]\frac{3^{-3}}{3^4}=3^{-3-4}=3^{-7}[/tex]

Then, the only option that is not equal is the first

Answer: A

RELAXING NOICE
Relax