ANSWER
EXPLANATION
In this problem, we have to complete the table by replacing v with each value from 0 to 6 in the table, and compute the corresponding value of s(v) based on the equation,
[tex]s(v)=\frac{500}{v+4}[/tex]
Find the values for the table,
[tex]v=0;s(0)=\frac{500}{0+4}=\frac{500}{4}=125[/tex][tex]v=1;s(1)=\frac{500}{1+4}=\frac{500}{5}=100[/tex][tex]v=2;s(2)=\frac{500}{2+4}=\frac{500}{6}\approx83.3[/tex][tex]v=3;s(3)=\frac{500}{3+4}=\frac{500}{7}\approx71.4[/tex][tex]v=4;s(4)=\frac{500}{4+4}=\frac{500}{8}=62.5[/tex][tex]v=5;s(5)=\frac{500}{5+4}=\frac{500}{9}\approx55.6[/tex][tex]v=6;s(6)=\frac{500}{6+4}=\frac{500}{10}=50[/tex]