a concrete drain is 10 m long with an outside diameter of 1 m and an inside diameter of 0.8 m determine the volume of concrete required to make the drain to the nearest tenth of cubic metre

Let x be the volume of the cylinder with diameter 1m
Let y be the volume of the cylinder with diameter 0.8m
The volume of concrete required to make the drain is:
[tex]V=x-y[/tex]___________
Volume of a cylinder:
[tex]V=\pi\cdot(\frac{d}{2})^2\cdot h[/tex]h is the height
d is the diameter
For the given drain:
[tex]\begin{gathered} V=(\pi\cdot(\frac{d_x}{2})^2\cdot h)-(\pi\cdot(\frac{d_y}{2})\cdot h)_{} \\ \\ V=((\frac{d_x}{2})^2-(\frac{d_y}{2})^2)\pi\cdot h \\ \\ V=(\frac{(d_x)^2}{4}-\frac{(d_y)^2}{4})\pi\cdot h \\ \\ V=(\frac{(d_x)^2-(d_y)^2}{4})\pi\cdot h \\ \\ \end{gathered}[/tex][tex]\begin{gathered} V=(\frac{(1m)^2-(0.8m)^2}{4})\pi\cdot10m \\ \\ V=\frac{1m^2-0.64m^2}{4}\cdot\pi\cdot10m \\ \\ V=\frac{0.36m^2}{4}\cdot\pi\cdot10m \\ \\ V=\frac{3.6\pi}{4}m^3 \\ \\ V=0.9\pi m^3 \\ \\ V\approx2.8m^3 \end{gathered}[/tex]