If m∠B = 111°, a = 12, and c = 6, what are the measures of the remaining side and angles? (it is a triangle) m∠A = 47.4°, m∠C = 21.6°, b = 15.2 m∠A = 47.4°, m∠C = 21.6°, b = 15.9 m∠A = 44.8°, m∠C = 24.2°, b = 15.9 m∠A = 44.8°, m∠C = 24.2°, b = 15.2

If mB 111 a 12 and c 6 what are the measures of the remaining side and angles it is a triangle mA 474 mC 216 b 152 mA 474 mC 216 b 159 mA 448 mC 242 b 159 mA 44 class=

Respuesta :

To answer, we will first need to use the Law of cosines. Assuming the angles ∠A, ∠B and ∠C are opposite to the sides a, b, and c, we can use the formula of the Law of Cosines to find the missing side:

[tex]b^2=a^2+c^2-2ac\cos B^{}[/tex]

Thus, we have:

m∠B = 111°

a = 12

c = 6

[tex]\begin{gathered} b^2=12^2+6^2-2\cdot12\cdot6\cdot\cos 111\degree \\ b^2=144+36-144\cdot(-0.35836\ldots) \\ b^2=231.604\ldots \\ b=15.2185\ldots\approx15.2 \end{gathered}[/tex]

Now that we know all sides and one of the angles, we can use the Law of Since:

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

Thus:

[tex]\begin{gathered} \frac{\sin A}{a}=\frac{\sin B}{b} \\ \sin A=a\cdot\frac{\sin B}{b}=12\cdot\frac{\sin111\degree}{15.2185\ldots}=\frac{0.9335\ldots}{15.2185\ldots}=0.7361\ldots \\ A=\arcsin 0.7361\ldots=47.4034\ldots\degree\approx47.4\degree \end{gathered}[/tex]

And:

[tex]\begin{gathered} \frac{\sin C}{c}=\frac{\sin B}{b} \\ \sin C=c\cdot\frac{\sin B}{b}=6\cdot\frac{\sin111\degree}{15.2185\ldots}=\frac{0.9335\ldots}{15.2185\ldots}=0.3680\ldots \\ C=\arcsin 0.3680\ldots=21.5965\ldots\degree\approx21.6\degree \end{gathered}[/tex]

So, we have:

[tex]\begin{gathered} m\angle A\approx47.4\degree \\ m\angle C\approx21.6\degree \\ b\approx15.2 \end{gathered}[/tex]

Which corresponds to the first alternative.

RELAXING NOICE
Relax