Respuesta :

The complex number to find the 4th root is given to be:

[tex]2\sqrt{3}-2i[/tex]

Step 1: Transform the complex number in the r.cisθ form

[tex]\begin{gathered} r=\sqrt{(2\sqrt{3})^2+(-2)^2}=\sqrt{12+4}=\sqrt{16} \\ r=4 \\ and \\ \theta=\arctan(\frac{-2}{2\sqrt{3}})=-\frac{\pi}{6} \end{gathered}[/tex]

Therefore, the polar form is:

[tex]\Rightarrow4cis(-\frac{\pi}{6})[/tex]

Step 2: According to the De Moivre's Formula, all n-th roots of a complex number

[tex]\begin{gathered} rcis\theta \\ \Rightarrow r^{\frac{1}{n}}cis(\frac{\theta+2\pi k}{n}) \\ for \\ k=0...n-1 \end{gathered}[/tex]

Therefore, the roots are as follows.

[tex]n=4[/tex]

k = 0

[tex]\begin{gathered} \Rightarrow4^{\frac{1}{4}}cis(\frac{-\frac{\pi}{6}+2\pi(0)}{4}) \\ \Rightarrow\sqrt{2}cis(-\frac{\pi}{24}) \end{gathered}[/tex]

k = 1

[tex]\begin{gathered} \Rightarrow\sqrt{2}cis(\frac{-\frac{\pi}{6}+2\pi}{4}) \\ \Rightarrow\sqrt{2}cis(\frac{11\pi}{24}) \end{gathered}[/tex]

k = 2

[tex]\Rightarrow\sqrt{2}cis(\frac{23\pi}{24})[/tex]

k = 3

[tex]\Rightarrow\sqrt{2}cis(\frac{35\pi}{24})[/tex]

RELAXING NOICE
Relax