Writing an equation of an ellipse given the center and endpoint of an axis and the length of the other access

Solution
Writing an equation of an ellipse given the center and endpoint of an axis
Let center C ; C(h=4; k= 0)
Let the length of its major axis AA’=2a=8 ; a=4
Let the length of its minor axix BB’=2b=?
B(4 ; 0) ; C(4 ; - 1) ; BC=b
[tex]\begin{gathered} b^2=(4-4)^2+(0--1)^2 \\ b^2=0+1^2 \\ b=1 \end{gathered}[/tex]The equation of ellipse in standard form when it is horizontal is :
[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)}{b^2}=1^2[/tex]Therefore the equation of the ellipse is
[tex]\frac{(x-4)}{16}^2+\frac{(y-0)^2}{1}=1[/tex]