Given the transformation below
[tex]f(x)=14(x-3)+1\Rightarrow g(x)=7(x+2)+1[/tex]
The transformation is: Vertical compressed by 1/2, shifted left by 5.
Given the transformation below
[tex]f(x)=6(x+2)-3\Rightarrow g(x)=8(x-3)+6[/tex]
The transformation is: Vertical stretched by 4/3, shifted right by 9.
Given the transformation below
[tex]f(x)=3(x+1)+\frac{2}{3}\Rightarrow g(x)=3(3-x)-\frac{2}{3}[/tex]
The transformation is: Reflection over the y-axis, shifted left by 2, shifted downward by 4/3.
Given the transformation below
[tex]f(x)=-\frac{1}{3}(x+2)-4\Rightarrow g(x)=\frac{1}{3}(-x-2)+6[/tex]
The transformation is: Upward shift by 10units.
Given the transformation below
[tex]f(x)=\frac{4}{3}(x-\frac{2}{3})+\frac{1}{3}\Rightarrow g(x)=\frac{2}{3}(\frac{2}{3}-x)[/tex]
The transformation is: Vertical compression by 1/2, reflected over the y-axis, shifted download by 1/3.