Given:
[tex]\begin{gathered} 7x-2y=-13 \\ y=4x-1 \end{gathered}[/tex]To Determine: number of possible solutions
Solution
Let us solve for x and y simultaneously using substitution method
[tex]\begin{gathered} Combining\text{ the 2 equations} \\ equation1:7x-2y=-13 \\ equation2:y=4x-1 \end{gathered}[/tex]From equation 2, y = 4x - 1. Let us substitute for y in equation 1
[tex]\begin{gathered} 7x-2(4x-1)=-13 \\ 7x-8x+2=-13 \\ 7x-8x=-13-2 \\ -x=-15 \\ x=15 \end{gathered}[/tex]Substitute x = 15 into equation 2
[tex]\begin{gathered} y=4x-1 \\ y=4(15)-1 \\ y=60-1 \\ y=59 \end{gathered}[/tex]Hence, the solution to the given system of equations is x = 15, y = 59
The system of equations has ONE SOLUTION
The