We are told that the volumes between two spheres is 16/3, this means that:
[tex]\frac{V_1}{V_2}=\frac{16}{3}[/tex]Now the formula for the volume of a sphere is:
[tex]V=\frac{4\pi r^3}{3}[/tex]Replacing in the previous formula:
[tex]\frac{\frac{4\pi r^3_1}{3}}{\frac{4\pi r^2_2}{3}}=\frac{16}{3}[/tex]Simplifying:
[tex]\frac{r^3_1}{r^3_2}=\frac{16}{3}[/tex]Now we solve for the first radius which is the radius of the bigger sphere:
[tex]r^3_1=\frac{16}{3}r^3_2[/tex]Now we determine the radius of the smallest ball using the formula for the surface area of a sphere:
[tex]A_S=4\pi r^2_2[/tex]Now we replace the value of the surface area:
[tex]42.3=4\pi r^2_2[/tex]Now we solve for the radius:
[tex]\frac{42.3}{4\pi}=r^2_2[/tex]Taking square root on both sides:
[tex]\sqrt[]{\frac{42.3}{4\pi}}=r_2[/tex]Solving the operation:
[tex]1.83\operatorname{cm}=r_2[/tex]Now we replace the value of the radius in the proportion:
[tex]r^3_1=\frac{16}{3}(1.83\operatorname{cm})^3[/tex]Solving the operations:
[tex]r^3_1=32.7\operatorname{cm}^3[/tex]Taking cubic root to both sides:
[tex]r_1=\sqrt[3]{32.7\operatorname{cm}^3}[/tex]Solving the operation:
[tex]r_1=3.19\operatorname{cm}[/tex]Now we use the formula for the surface area using the new radius:
[tex]A_S=4\pi r^2_1[/tex]Replacing the radius:
[tex]A_S=4\pi(3.19cm)^2[/tex]Solving the operation:
[tex]A_S=127.9\operatorname{cm}^2[/tex]Therefore, the surface area of the new ball is 127.9 square centimeters.