We are given that the gravitational pull of mars is 0.376 times the gravitational pull of the earth. The gravitational pull of the earth is:
[tex]g=9.8\frac{m}{s^2}[/tex]Now, we determine the gravitational pull of mars:
[tex]g_{\text{mars}}=0.376g[/tex]Substituting the value of "g" we get:
[tex]g_{\text{mars}}=0.376(9.8\frac{m}{s^2})[/tex]Solving the operation we get:
[tex]g_{\text{mars}}=3.68\frac{m}{s^2}[/tex]Now, to determine the weight of a person we use the following formula:
[tex]W=mg_{\text{mars}}[/tex]Where:
[tex]\begin{gathered} W=\text{ weight} \\ m=\text{ mass} \end{gathered}[/tex]Substituting the values we get:
[tex]W=(98.6\operatorname{kg})(3.68\frac{m}{s^2})[/tex]Solving the operation we get:
[tex]W=363.32N[/tex]Therefore, the weight of the person on mars is 363.32 Newtons.