can you please help i cant seem to find the answer

ANSWERS
1. 13 m³
2. v2 = 86.25 m/s
3. -35.8 atm
EXPLANATION
1. The volume of water flowing in a 8min period is
[tex]V=v_1\cdot t\cdot A_1[/tex]Where v1 = 13.8m/s, t = 8min and A1 is the section of the pipe:
[tex]A_1=\pi\cdot r^2=\frac{\pi}{4}d^2_1[/tex]So the volume is (remember to transform the time from minutes to seconds and the diameter from centimeters to meters)
[tex]V=13.8\frac{m}{s}\cdot8\min \cdot\frac{60s}{1\min}\cdot\frac{\pi}{4}\cdot0.05^2m^2[/tex][tex]V=13.8\frac{m}{s}\cdot480s\cdot0.00196m^2[/tex][tex]V\approx13m^3[/tex]2. The speed in the left section of the pipe is
[tex]v_2=v_1\cdot\frac{A_1}{A_2}[/tex]This is because the flow rate is constant along the pipe (Q = v*A).
As shown in the previous item the area is
[tex]A=\frac{\pi}{4}\cdot d^2[/tex]So when dividing both areas the factor π/4 cancels out. Therefore the speed is
[tex]v_2=v_1\cdot\frac{d^2_1}{d^2_2}[/tex]In this case we can use centimeters for the diameters because in the division the units cancel out
[tex]v_2=13.8m/s\cdot\frac{5^2\operatorname{cm}}{2^2\operatorname{cm}}=13.8m/s\cdot\frac{25}{4}=86.25m/s[/tex]3. Using Bernoulli's equation:
[tex]p_1+\frac{1}{2}\cdot\rho\cdot v^2_1+\rho\cdot g\cdot h_1=p_2+\frac{1}{2}\cdot\rho\cdot v^2_2+\rho\cdot g\cdot h_2_{}[/tex]The pipe is horizontal so h1 = h2. Also, the pipe is open on the right side p1 = p0, where p0 is atmosferic pressure. The third term on each side of the equation cancels out because they are equal:
[tex]p_0+\frac{1}{2}\cdot\rho\cdot v^2_1=p_2+\frac{1}{2}\cdot\rho\cdot v^2_2[/tex]Solving for p2:
[tex]p_2=p_0+\frac{1}{2}\cdot\rho\cdot v^2_1-\frac{1}{2}\cdot\rho\cdot v^2_2[/tex]1/2 and ρ are common factors:
[tex]p_2=p_0+\frac{1}{2}\cdot\rho(v^2_1-v^2_2)[/tex]Atmosferic pressure is given 1.01x10⁵ Pa, ρ is also given 1000 kg/m³. The speeds are v1 = 13.8m/s and v2 = 86.25 m/s. The pressure in the left section of the pipe is
[tex]p_2=1.01\times10^5Pa+\frac{1}{2}\cdot1000\frac{\operatorname{kg}}{m^3}\cdot(13.8^2-86.25^2)\frac{m^2}{s^2}[/tex][tex]p_2=-3.52\times10^6Pa[/tex]Thus, the guage pressure in the left section of the pope is:
[tex](-35.2\times10^5Pa-1.01\times10^5Pa)=-3.62\times10^6Pa\approx-35.8\text{atm}[/tex]