Given that the angles of the triangle are 30, 60, and 90.
Using the sine law
[tex]\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]Substitute A=30, B=60, and C=90, we get
[tex]\frac{a}{\sin 30^o}=\frac{b}{\sin 60^o}=\frac{c}{\sin 90^o}[/tex][tex]\text{Substitute }\sin 30^o=\frac{1}{2},\sin 60^o=\frac{\sqrt[]{3}}{2},\text{ and }\sin 90^o=1,\text{ we get}[/tex][tex]\frac{a}{\frac{1}{2}}=\frac{b}{\frac{\sqrt[]{3}}{2}}=\frac{c}{1}[/tex][tex]2a=\frac{2b}{\sqrt[]{3}}=c[/tex]We know that the longest side should be the opposite side of the big angle (90).
Let c be the longest side of the given triangle.
Substitute c=1, we get
[tex]2a=\frac{2b}{\sqrt[]{3}}=1[/tex][tex]2a=1\text{ and }\frac{2b}{\sqrt[]{3}}=1[/tex][tex]a=\frac{1}{2}\text{ and }b=\frac{\sqrt[]{3}}{2}[/tex][tex]a=0.5\text{ and b=}0.866[/tex]The smallest side is 0.5 feet
Conver the feet into inches.
[tex]1\text{ foo}t\text{ =12 inches }[/tex]Dividing both sides by 2, we get
[tex]\frac{1}{2}\text{ foo}t\text{ =}\frac{12}{2}\text{ inches }[/tex][tex]0.5\text{foo}t\text{ =}6\text{ inches }[/tex]Hence the smallest side is 6 inches.