Respuesta :

Given that the angles of the triangle are 30, 60, and 90.

Using the sine law

[tex]\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]

Substitute A=30, B=60, and C=90, we get

[tex]\frac{a}{\sin 30^o}=\frac{b}{\sin 60^o}=\frac{c}{\sin 90^o}[/tex][tex]\text{Substitute }\sin 30^o=\frac{1}{2},\sin 60^o=\frac{\sqrt[]{3}}{2},\text{ and }\sin 90^o=1,\text{ we get}[/tex]

[tex]\frac{a}{\frac{1}{2}}=\frac{b}{\frac{\sqrt[]{3}}{2}}=\frac{c}{1}[/tex]

[tex]2a=\frac{2b}{\sqrt[]{3}}=c[/tex]

We know that the longest side should be the opposite side of the big angle (90).

Let c be the longest side of the given triangle.

Substitute c=1, we get

[tex]2a=\frac{2b}{\sqrt[]{3}}=1[/tex][tex]2a=1\text{ and }\frac{2b}{\sqrt[]{3}}=1[/tex]

[tex]a=\frac{1}{2}\text{ and }b=\frac{\sqrt[]{3}}{2}[/tex][tex]a=0.5\text{ and b=}0.866[/tex]

The smallest side is 0.5 feet

Conver the feet into inches.

[tex]1\text{ foo}t\text{ =12 inches }[/tex]

Dividing both sides by 2, we get

[tex]\frac{1}{2}\text{ foo}t\text{ =}\frac{12}{2}\text{ inches }[/tex]

[tex]0.5\text{foo}t\text{ =}6\text{ inches }[/tex]

Hence the smallest side is 6 inches.

RELAXING NOICE
Relax