The half life formula is :
[tex]N(t)=N_o(\frac{1}{2})^{\frac{t}{T}}[/tex]where N(t) = remaining quantity after t years
No = Original Quantity
t = time in years
T = half life in years
From the problem, we have :
N(t) = 30 grams
No = 100 grams
T = 674
Solve for t :
[tex]\begin{gathered} 30=100(\frac{1}{2})^{\frac{t}{674}} \\ \frac{30}{100}=(\frac{1}{2})^{\frac{t}{674}} \\ \frac{3}{10}=(\frac{1}{2})^{\frac{t}{674}} \end{gathered}[/tex]Take ln of both sides :
[tex]\begin{gathered} \ln (\frac{3}{10})=\ln (\frac{1}{2})^{\frac{t}{674}} \\ \ln (\frac{3}{10})=\frac{t}{674}\ln (\frac{1}{2}) \\ t=\frac{674\ln (\frac{3}{10})}{\ln (\frac{1}{2})} \\ t=1170.71 \end{gathered}[/tex]The answer is t = 1170.71 years