If the order of choice is relevant, use permutation. We have to choose 5 objects in a total of 9:
[tex]9\times8\times7\times6\times5=15120\text{ ways}[/tex]Obs: Initially we have 9 objects, you choose one, then we have 8, you choose another, then you have 7..... (this is the reasoning)
If the order of choice is not relevant, use a combination. This can be done by the equation above:
[tex]C_{9,5}=\frac{9!}{(9-5)!\times5!}[/tex][tex]C_{9,5}=\frac{9!}{4!\times5!}[/tex][tex]C_{9,5}=\frac{9\times8\times7\times6\times5!}{4!\times5!}[/tex][tex]C_{9,5}=\frac{9\times8\times7\times6}{4\times3\times2\times1}[/tex][tex]C_{9,5}=126\text{ ways}[/tex]Obs: It is a combination of 9 elements chosen 5 by 5.