Given:
[tex]ax^2+bx+c=0[/tex]Required:
To derive the quadratic formula.
Explanation:
Consider the given equation,
[tex]ax^2+bx+c=0[/tex]Divide all terms by a, we get
[tex]x^2+\frac{b}{a}x+\frac{c}{a}=0[/tex]Subtract the constant term from both sides of the equation,
[tex]x^2+\frac{b}{a}x=-\frac{c}{a}[/tex]To have a square on the left side the third term (constant) should be
[tex](\frac{b}{2a})^2[/tex]So add that amount to both sides
[tex]x^2+\frac{b}{a}x+(\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2[/tex]Re-write the left-side as a square.
[tex](x+(\frac{b}{2a}))^2=(\frac{b}{2a})^2-\frac{c}{a}[/tex]Take the square root of both sides, we get
[tex]\sqrt{(x+(\frac{b}{2a}))^2}=\sqrt{(\frac{b}{2a})^2-\frac{c}{a}}[/tex][tex](x+\frac{b}{2a})=\pm\sqrt{(\frac{b}{2a})^2-\frac{c}{a}}[/tex]Now,
[tex]x=\pm\sqrt{(\frac{b}{2a})^2-\frac{c}{a}}-\frac{b}{2a}[/tex][tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]Final Answer:
The quadratic formula is
[tex]x=\frac{-b\pm b^{2}-4ac}{2a}[/tex]