Respuesta :

Given:

[tex]ax^2+bx+c=0[/tex]

Required:

To derive the quadratic formula.

Explanation:

Consider the given equation,

[tex]ax^2+bx+c=0[/tex]

Divide all terms by a, we get

[tex]x^2+\frac{b}{a}x+\frac{c}{a}=0[/tex]

Subtract the constant term from both sides of the equation,

[tex]x^2+\frac{b}{a}x=-\frac{c}{a}[/tex]

To have a square on the left side the third term (constant) should be

[tex](\frac{b}{2a})^2[/tex]

So add that amount to both sides

[tex]x^2+\frac{b}{a}x+(\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2[/tex]

Re-write the left-side as a square.

[tex](x+(\frac{b}{2a}))^2=(\frac{b}{2a})^2-\frac{c}{a}[/tex]

Take the square root of both sides, we get

[tex]\sqrt{(x+(\frac{b}{2a}))^2}=\sqrt{(\frac{b}{2a})^2-\frac{c}{a}}[/tex][tex](x+\frac{b}{2a})=\pm\sqrt{(\frac{b}{2a})^2-\frac{c}{a}}[/tex]

Now,

[tex]x=\pm\sqrt{(\frac{b}{2a})^2-\frac{c}{a}}-\frac{b}{2a}[/tex][tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Final Answer:

The quadratic formula is

[tex]x=\frac{-b\pm b^{2}-4ac}{2a}[/tex]

RELAXING NOICE
Relax