ANSWER
[tex]x=2;y=-7[/tex]EXPLANATION
We want to solve the system of equations by elimination:
[tex]\begin{gathered} x+y=-5 \\ x-y=9 \end{gathered}[/tex]To do this, add the two equations:
[tex]\begin{gathered} x+x+y-y=-5+9 \\ \Rightarrow2x=4 \end{gathered}[/tex]Simplify and solve for x:
[tex]\begin{gathered} \frac{2x}{2}=\frac{4}{2} \\ x=2 \end{gathered}[/tex]To find y, substitute the value of x into the first equation:
[tex]\begin{gathered} 2+y=-5 \\ \Rightarrow y=-5-2 \\ y=-7 \end{gathered}[/tex]The solution to the system of equations is:
[tex]x=2;y=-7[/tex]