The exponential regression model that fits the data is;
[tex]P_t=114.38(1.01^t)[/tex]
(b) In 2040;
[tex]t=40[/tex]
Thus, the model predicts that the population of mexico will be;
[tex]\begin{gathered} P_{40}=114.38(1.01^{40}) \\ P_{40}=170.3 \end{gathered}[/tex]
The model predicts that the population of mexico will be 170.3 million people.
(c) When the population of mexico reach 145 million, the year will be;
[tex]\begin{gathered} 145=114.38(1.01^t) \\ 1.01^t=\frac{145}{114.38} \\ \\ \end{gathered}[/tex]
So, we have;
[tex]\begin{gathered} 1.01^t=1.2677 \\ t=23.84 \\ t\approx24 \end{gathered}[/tex]
During the year 2024.