The graph of the function f(x)=1x+3−15 is a transformation of the graph of the function g(x)=1x by

Given:
The graph of the function
[tex]f(x)=\frac{1}{x+3}-15[/tex]is a transformation of the graph of
[tex]g(x)=\frac{1}{x}[/tex]Required:
Find the vertical and the horizontal shift of units.
Explanation:
The graph of
[tex]f(x)=\frac{1}{x+3}[/tex]shift the graph of
[tex]g(x)=\frac{1}{x}[/tex]left 3 units by subtracting 3 from the x-coordinates of the points on the graph of 1/x.
The graph of
[tex]g(x)=\frac{1}{x+3}-15[/tex]shift the graph of
[tex]g(x)=\frac{1}{x+3}[/tex]down 15 units by subtracting 15 from the y-coordinates of the points on the graph of
[tex]g(x)=\frac{1}{x+3}[/tex]Thus the graph
[tex]f(x)=\frac{1}{x+3}-15[/tex]shift the graph of
[tex]g(x)=\frac{1}{x}[/tex]horizontal left 3 units and the vertical shift down 15 units.
Final Answer:
Vertical shift - down 15 units
Horizontal shift - left 3 units