Respuesta :

Given:

The graph of the function

[tex]f(x)=\frac{1}{x+3}-15[/tex]

is a transformation of the graph of

[tex]g(x)=\frac{1}{x}[/tex]

Required:

Find the vertical and the horizontal shift of units.

Explanation:

The graph of

[tex]f(x)=\frac{1}{x+3}[/tex]

shift the graph of

[tex]g(x)=\frac{1}{x}[/tex]

left 3 units by subtracting 3 from the x-coordinates of the points on the graph of 1/x.

The graph of

[tex]g(x)=\frac{1}{x+3}-15[/tex]

shift the graph of

[tex]g(x)=\frac{1}{x+3}[/tex]

down 15 units by subtracting 15 from the y-coordinates of the points on the graph of

[tex]g(x)=\frac{1}{x+3}[/tex]

Thus the graph

[tex]f(x)=\frac{1}{x+3}-15[/tex]

shift the graph of

[tex]g(x)=\frac{1}{x}[/tex]

horizontal left 3 units and the vertical shift down 15 units.

Final Answer:

Vertical shift - down 15 units

Horizontal shift - left 3 units

RELAXING NOICE
Relax