Convert the point P=(r,theta)to a rectangular coordinate of the form (x,y): (2,-pi/6)

Answer:
B. (x, y) = (√3, -1)
Explanation:
To convert from the polar form, (r, θ) to the rectangular form, use the formula below:
[tex](x,y)=(r\cos\theta,r\sin\theta)[/tex]Thus, given the polar form:
[tex](2,-\frac{\pi}{6})[/tex]Its rectangular form is:
[tex]\begin{gathered} (x,y)=\left(2\cos\left(-\frac{\pi}{6}\right),2\sin\left(-\frac{\pi}{6}\right)\right) \\ =\left(2\times\frac{\sqrt{3}}{2},2\left(-\frac{1}{2}\right)\right) \\ =(\sqrt{3},-1) \end{gathered}[/tex]The rectangular form, (x, y) = (√3, -1).
The correct option is B.