Calculate the following limits. Enter "DNE" if the limit does not exist

The function f is given by:
[tex]f(x)=\begin{cases}{8-x-x^2\text{ if }x\leq1} \\ {\placeholder{⬚}} \\ 2x-1\text{ if }x\gt1\end{cases}[/tex]Therefore,
[tex]\lim_{x\to1^-}f(x)=8-(1)-(1)^2=8-1-1=6[/tex]Therefore,
[tex]\lim_{x\to1^-}f(x)=6[/tex]Hence, the limit of f(x) as x tends to 1 from the left is 6
[tex]\begin{gathered} \lim_{x\to1^+}f(x)=2(1)-1=1 \\ \operatorname{\lim}_{x\to1^+}f(x)=1 \end{gathered}[/tex]Hence, the limit of f(x) as x tends to 1 from the right is 1
Since the left limit is not equal to the right limit, it follows that the limit of f(x) as x tends to 1 does not exist:
[tex]\lim_{x\to1}f(x)=DNE[/tex]