Hi thank goodness yea I am and thank

We are given the first derivative
[tex]\frac{di}{dt}=210\sin(17.5t)[/tex]To find the antiderivative, we must think of functions whose derivative is sin x. That happens when we have f(x) = cos u. Recall:
[tex]\frac{d}{dx}\cos u=-u^{\prime}\sin u[/tex]So we can assume that:
[tex]-u^{\prime}\sin u=210\sin17.5t[/tex]So we know that u must be 17.5t, which gives us u' = 17.5. Therefore there must be a multiplier before u' for us to get -210.
[tex]-210\div17.5=-12[/tex]So, the antiderivative must be:
[tex]i(t)=-12\cos(17.5t)+c[/tex]Let's check:-
[tex]\begin{gathered} i(t)=-12\cos(17.5t)+c \\ \\ i^{\prime}(t)=-12(-17.5)[\sin(17.5t)]+0 \\ \\ i^{\prime}(t)=210\sin(17.5t) \end{gathered}[/tex]To find the value of c, we will use i(0) = 0.
[tex]\begin{gathered} i(t)=-12\cos(17.5t)+c \\ i(0)=-12\cos(17.5\cdot0)+c \\ 0=-12\cos0+c \\ 0=-12\cos0+c \\ 0=-12(1)+c \\ 0=-12+c \\ c=12 \end{gathered}[/tex]The complete equation for i(t) is:
[tex]i(t)=-12\cos(17.5t)+12[/tex]Using the equation we found for 1(t), we can calculate i(5).
[tex]\begin{gathered} i(t)=-12\cos(17.5t)+12 \\ i(5)=-12\cos(17.5\cdot5)+12 \\ i(5)=-12(0.0436)+12 \\ i(5)=1.98 \end{gathered}[/tex]The current when t = 5 is 1.98 amperes.
To find the time when the current is zero again, we substitute once more.
[tex]\begin{gathered} i(t)=-12\cos(17.5t)+12 \\ 0=-12\cos(17.5t)+12 \\ -12=-12\cos(17.5t) \\ 1=\cos(17.5t) \\ \cos^{-1}1=17.5t \\ 2\pi=17.5t \\ t=0.359 \end{gathered}[/tex]The next time that current is zero again is at t = 0.359 seconds.
The rate of change of di/dt when t = 0.5 is equal to its derivative (the second derivative of the original function).
[tex]\begin{gathered} \frac{di}{dt}=210\sin(17.5t) \\ \\ \frac{di^2}{dt^2}=210(17.5)\cos(17.5t) \\ \\ \frac{d\imaginaryI^{2}}{dt^{2}}=3,675\cos(17.5t) \\ \\ \frac{d\imaginaryI^{2}}{dt^{2}}=3,675\cos(17.5\cdot0.5) \\ \\ \frac{d\imaginaryI^{2}}{dt^{2}}=3,675(0.988) \\ \\ \frac{d\mathrm{i}^2}{dt^2}=3,632 \end{gathered}[/tex]The rate of change of di/dt at t = 0.5 is 3,632 amps/second^2.