To solve this equation, we can proceed as follows:
[tex]6.75+\frac{3}{8}x=13\frac{1}{4}[/tex]1. Subtract 6.75 to both sides of the equation:
[tex]6.75-6.75+\frac{3}{8}x=13\frac{1}{4}-6.75\Rightarrow\frac{3}{8}x=13\frac{1}{4}-6.75[/tex]We can solve the right part of the equation using fractions as follows:
[tex]6.75=6+\frac{3}{4}[/tex]We also know that
[tex]13\frac{1}{4}=13+\frac{1}{4}[/tex]Then, we have:
[tex]\frac{3}{8}x=13+\frac{1}{4}-(6-\frac{3}{4})=13-6+\frac{1}{4}-\frac{3}{4}=7+\frac{1-3}{4}_{}[/tex][tex]\frac{3}{8}x=7+(-\frac{3}{4})=7-\frac{3}{4}=\frac{7\cdot4-3}{4}=\frac{28-3}{4}_{}=\frac{25}{4}[/tex]Now, the equation is:
[tex]\frac{3}{8}x=\frac{25}{4}[/tex]We need to multiply by 8/3 to both sides to solve for x as follows:
[tex]\frac{8}{3}\cdot\frac{3}{8}x=\frac{8}{3}\cdot\frac{25}{4}\Rightarrow x=\frac{8}{4}\cdot\frac{25}{3}\Rightarrow x=2\cdot\frac{25}{3}\Rightarrow x=\frac{50}{3}=16.6666666\ldots=16\frac{2}{3}[/tex]Therefore, the value for x is equal to:
[tex]x=16\frac{2}{3}=\frac{50}{3}=16.6666666\ldots[/tex]