Answer:
• 2x
,• x-4
,• x²+4x+16
Explanation:
Given the volume of a rectangular prism:
[tex]V=2x^4-128x[/tex]To determine the side lengths, we factor the expression for V.
[tex]V=2x(x^3-64)=2x(x^3-4^3)[/tex]Next, we factorize x³-4³ using the difference of two cubes rule:
[tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]Therefore:
[tex]x^3-4^3=(x-4)(x^2+4x+4^2)=(x-4)(x^2+4x+16)[/tex]The factored form of V is, therefore:
[tex]V=2x(x-4)(x^2+4x+16)[/tex]The lengths of the prism's sides are 2x, x-4 and x²+4x+16.