We have the next system of equations:
[tex]\begin{gathered} -6x+6y=6\text{ (eq. 1)} \\ -6x+3y=-12\text{ (eq. 2)} \end{gathered}[/tex]Subtracting equation 2 to equation 1, we get:
Isolating y from equation 3:
[tex]\begin{gathered} \frac{3y}{3}=\frac{18}{3} \\ y=6 \end{gathered}[/tex]Substituting y = 6 into equation 1 and solving for x:
[tex]\begin{gathered} -6x+6\cdot6=6 \\ -6x+36=6 \\ -6x+36-36=6-36 \\ -6x=-30 \\ \frac{-6x}{-6}=\frac{-30}{-6} \\ x=5 \end{gathered}[/tex]The solution is the point (5, 6)