Respuesta :

Given:

[tex]\begin{gathered} m(\hat{AB})=58^{\circ} \\ m(\hat{DC})=110^{\circ} \end{gathered}[/tex]

To find: The angle

[tex]\angle BPC[/tex]

Explanation:

We know that,

[tex]\angle DPC=\frac{\hat{mAB}+\hat{mDC}}{2}[/tex]

On substitution we get,

[tex]\begin{gathered} \angle DPC=\frac{58+110}{2} \\ =\frac{168}{2} \\ \angle DPC=84^{\circ} \end{gathered}[/tex]

Using the linear pair,

[tex]\begin{gathered} \angle BPC+\angle DPC=180 \\ \angle BPC+84=180 \\ \angle BPC=180-84 \\ =96^{\circ} \end{gathered}[/tex]

Final answer:

The correct option is b.

[tex]\angle BPC=96^{\circ}[/tex]

RELAXING NOICE
Relax