Respuesta :
[tex]\begin{gathered} 2x-y=-3 \\ -6x-2y=-6 \end{gathered}[/tex]
Part A
replace (0,3) on (x,y)
[tex]\begin{gathered} 2(0)-(3)=-3 \\ 0-3=-3 \\ -3=-3 \end{gathered}[/tex]the equivalence is correct so (0,3) is a solution of the first equation
Part B.
replace (0,-3) on (x,y)
[tex]\begin{gathered} -6(0)-2(-3)=-6 \\ 0-(-6)=-6 \\ 6=-6 \end{gathered}[/tex]the equivalence is incorrect so (0,-3) isnt a solution of the second equation
Part C
To find the slope we need to solve each expresion and take the coefficient of x
first equation
[tex]\begin{gathered} 2x-y=-3 \\ y=2x+3 \end{gathered}[/tex]the slope is 2
second equation
[tex]\begin{gathered} -6x-2y=-6 \\ 2y=-6x+6 \\ y=-3x+3 \end{gathered}[/tex]the slope is -3
Part D
the y-intercept is the constant without variable on each equation
first equation
[tex]y=2x+3[/tex]the y-intercept is 3
second equation
[tex]y=-3x+3[/tex]the y-intercep is 3 too
The Graph
we need two points of the line and join by a right infinite line
first equation
the points (0,3) and (-3/2,0) belong to the line 1
second equation
the points (0,3) and (1,0) belong to the line 2
Solution of the system
we can note the two lines trought the point (3,0) so this is the solution and we can check matching the equations and solving x
[tex]\begin{gathered} 2x+3=-3x+3 \\ 2x+3x=3-3 \\ 5x=0 \\ x=0 \end{gathered}[/tex]and replace x=0 on any equation to solve y I will use the first equation
[tex]\begin{gathered} y=2x+3 \\ y=2(0)+3 \\ y=3 \end{gathered}[/tex]so the solution point is (0,3)


