Respuesta :

Given:

[tex]k(x)=-12\sqrt[]{x}\text{ betw}een\text{ x=2 and x=6}[/tex]

The slope is calculated as,

[tex]\begin{gathered} m=\frac{f(b)-f(a)}{b-a} \\ m=\frac{f(6)-f(2)}{6-2} \\ m=\frac{-12\sqrt[]{6}-(-12\sqrt[]{2})}{4} \\ m=\frac{-12\sqrt[]{6}+12\sqrt[]{2}}{4} \\ m=\frac{12}{4}(\sqrt[]{2}-\sqrt[]{6}) \\ m=3(\sqrt[]{2}-\sqrt[]{6}) \\ m=-3.11 \end{gathered}[/tex]

Answer: slope of the secant line is -3.11.

RELAXING NOICE
Relax