Find the slope of the secant line for k(x) = -12 SQRT x between x = 2 and x= 6

Given:
[tex]k(x)=-12\sqrt[]{x}\text{ betw}een\text{ x=2 and x=6}[/tex]The slope is calculated as,
[tex]\begin{gathered} m=\frac{f(b)-f(a)}{b-a} \\ m=\frac{f(6)-f(2)}{6-2} \\ m=\frac{-12\sqrt[]{6}-(-12\sqrt[]{2})}{4} \\ m=\frac{-12\sqrt[]{6}+12\sqrt[]{2}}{4} \\ m=\frac{12}{4}(\sqrt[]{2}-\sqrt[]{6}) \\ m=3(\sqrt[]{2}-\sqrt[]{6}) \\ m=-3.11 \end{gathered}[/tex]Answer: slope of the secant line is -3.11.