Respuesta :
Step 1. The expression with complex numbers that we have is:
[tex](-2+7i)(3+8i)-(3-4i)[/tex]We have multiplication and subtraction. First, we will need to solve the multiplications and after that, we will make the subtraction.
Step 2. The formula to multiply complex numbers is:
[tex](a+bi)(c+di)=(ac-bd)+(bc+ad)i[/tex]In our multiplication:
a=-2
b=7
c=3
d=8
Therefore, the result of the first part of the expression is:
[tex](-2+7i)(3+8i)=(-2(3)-7(8))+(7(3)+(-2)(8))i[/tex]Solving the operations:
[tex]\begin{gathered} (-2+7\imaginaryI)(3+8\imaginaryI)=(-6-56)+(21-16)\imaginaryI \\ \downarrow \\ (-2+7\imaginaryI)(3+8\imaginaryI)=-62+5\imaginaryI \end{gathered}[/tex]Substituting this result into the original expression:
[tex]\begin{gathered} (-2+7\imaginaryI)(3+8\imaginaryI)-(3-4\imaginaryI) \\ \downarrow \\ (-62+5\mathrm{i})-(3-4\mathrm{i}) \end{gathered}[/tex]Step 3. Now we need to make the subtraction. To subtract complex numbers, we use the following formula:
[tex](a+bi)-(c+di)=(a-c)+(b-d)i[/tex]In our case:
a=-62
b=5
c=3
d=-4
The result is:
[tex](-62+5\imaginaryI)-(3-4\imaginaryI)=(-62-3)+(5-(-4))i[/tex]Solving the operations:
[tex]\begin{gathered} (-62+5\imaginaryI)-(3-4\imaginaryI)=(-65)+(5+4)\imaginaryI \\ \downarrow \\ (-62+5\imaginaryI)-(3-4\imaginaryI)=\boxed{-65+9\mathrm{i}} \end{gathered}[/tex]Answer:
[tex]\boxed{-65+9\mathrm{\imaginaryI}}[/tex]