Use Gauss-Jordan elimination to solve the following system of equations. Show your work, and interpret your result.

Use GaussJordan elimination to solve the following system of equations Show your work and interpret your result class=

Respuesta :

ANSWER:

x =- 4

y = 3

z = 2

STEP-BY-STEP EXPLANATION:

We have the following system of equations:

[tex]\begin{gathered} 3x-2y-3z=-24 \\ \\ 3x+5y+2z=7 \\ \\ -x+5y+3z=25 \end{gathered}[/tex]

The first thing is to build the matrix from the system of equations, just like this:

[tex]\begin{bmatrix}3&-2&-3&¦&-24\\ 3&5&2&¦&7\\ -1&5&3&¦&25\end{bmatrix}[/tex]

We solve by the Gauss-Jordan method, thus:

[tex]\begin{gathered} \text{ We find the pivot in column number 1 \lparen reversing the sign in the whole row\rparen and change row number 3 to number 1} \\ \\ \begin{bmatrix}1 & -5 & -3 & ¦ & -25 \\ 3 & 5 & 2 & ¦ & 7 \\ 3 & -2 & -3 & ¦ & -24\end{bmatrix} \\ \\ \text{ We multiply row number 1 by 3} \\ \\ \begin{bmatrix}3 & -15 & -9 & ¦ & -75 \\ 3 & 5 & 2 & ¦ & 7 \\ 3 & -2 & -3 & ¦ & -24\end{bmatrix} \\ \\ \text{ We subtract row number 1 by row number 2} \\ \\ \begin{bmatrix}3 & -15 & -9 & ¦ & -75 \\ 0 & 20 & 11 & ¦ & 82 \\ 3 & -2 & -3 & ¦ & -24\end{bmatrix} \\ \\ \text{ We subtract row number 1 from row number 3 and restore it} \\ \\ \begin{bmatrix}1 & -5 & -3 & ¦ & -25 \\ 0 & 20 & 11 & ¦ & 82 \\ 0 & 13 & 6 & ¦ & 51\end{bmatrix} \\ \\ \text{ We find the pivot in column number 2 by dividing row number 2 by 20} \\ \\ \begin{bmatrix}1 & -5 & -3 & ¦ & -25 \\ 0 & 1 & \frac{11}{20} & ¦ & \frac{82}{20} \\ 0 & 13 & 6 & ¦ & 51\end{bmatrix} \\ \\ \text{ We multiply row number 2 by -5} \\ \\ \begin{bmatrix}1 & -5 & -3 & ¦ & -25 \\ 0 & -5 & -\frac{11}{4} & ¦ & -\frac{41}{2} \\ 0 & 13 & 6 & ¦ & 51\end{bmatrix} \\ \\ \text{ We subtract row number 2 from row number 1 and restore it} \\ \\ \begin{bmatrix}1 & 0 & -\frac{1}{4} & ¦ & -\frac{9}{2} \\ 0 & 1 & \frac{11}{20} & ¦ & \frac{82}{20} \\ 0 & 13 & 6 & ¦ & 51\end{bmatrix} \\ \\ \text{ We multiply row number 2 by 13} \\ \\ \begin{bmatrix}1 & 0 & -\frac{1}{4} & ¦ & -\frac{9}{2} \\ 0 & 13 & \frac{143}{20} & ¦ & \frac{533}{10} \\ 0 & 13 & 6 & ¦ & 51\end{bmatrix} \\ \\ \text{ We subtract row number 2 from row number 3 and restore it} \\ \\ \begin{bmatrix}1 & 0 & -\frac{1}{4} & ¦ & -\frac{9}{2} \\ 0 & 1 & \frac{11}{20} & ¦ & \frac{82}{20} \\ 0 & 0 & -\frac{23}{20} & ¦ & -\frac{23}{10}\end{bmatrix} \\ \\ \text{ We find the pivot in column number 3 by dividing row number 3 by -23/20} \\ \\ \begin{bmatrix}1 & 0 & -\frac{1}{4} & ¦ & -\frac{9}{2} \\ 0 & 1 & \frac{11}{20} & ¦ & \frac{82}{20} \\ 0 & 0 & 1 & ¦ & 2\end{bmatrix} \\ \\ \text{ We multiply row number 3 by -1/4} \\ \\ \begin{bmatrix}1 & 0 & -\frac{1}{4} & ¦ & -\frac{9}{2} \\ 0 & 1 & \frac{11}{20} & ¦ & \frac{82}{20} \\ 0 & 0 & -\frac{1}{4} & ¦ & -\frac{1}{2}\end{bmatrix} \\ \\ \text{ We subtract row number 3 from row number 1 and restore it} \\ \\ \begin{bmatrix}1 & 0 & 0 & ¦ & -4 \\ 0 & 1 & \frac{11}{20} & ¦ & \frac{82}{20} \\ 0 & 0 & 1 & ¦ & 2\end{bmatrix} \\ \\ \text{ We multiply row number 3 by 11/20} \\ \\ \begin{bmatrix}1 & 0 & 0 & ¦ & -4 \\ 0 & 1 & \frac{11}{20} & ¦ & \frac{82}{20} \\ 0 & 0 & \frac{11}{20} & ¦ & \frac{11}{10}\end{bmatrix} \\ \\ \text{ We subtract row number 3 from row number 2 and restore it} \\ \\ \begin{bmatrix}1 & 0 & 0 & ¦ & -4 \\ 0 & 1 & 0 & ¦ & 3 \\ 0 & 0 & 1 & ¦ & 2\end{bmatrix} \\ \\ \text{ Therefore:} \\ \\ x=-4 \\ \\ y=3 \\ \\ z=2 \end{gathered}[/tex]

Therefore, the solution of the system is x =- 4, y = 3 and z = 2

RELAXING NOICE
Relax