Step 1 - write out the formula for computing the monthly payment d
[tex]P_0=\frac{d(1-(1+\frac{r}{k})^{-Nk})}{(\frac{r}{k})}[/tex]
Where
[tex]\begin{gathered} P_0=\text{ the balance on the credit} \\ d=\text{ the monthly payment} \\ r=\text{ The APR, the annual percentage rate} \\ k=\text{ the number of payments in a year} \\ N=\text{ the number of years} \end{gathered}[/tex]
Step 2 - write out the given values and substitute them into the formula:
In this case,
[tex]P_0=4500,d=?,r=12\text{ \%=0.12},k=12,N=1[/tex]
Therefore,
[tex]4500=\frac{d(1-(1+\frac{0.12}{12})^{-0.12})}{\frac{0.12}{12}}[/tex]
Dividing the numbers, we have
[tex]4500=\frac{d(1-(1+0.01)^{-0.12})}{0.01}[/tex]
Multiplying both sides by 0.01, we have:
[tex]\begin{gathered} 45=d(1-(1+0.01)^{-0.12}) \\ \text{Hence} \\ 45=d(1-1.01^{-0.12}) \end{gathered}[/tex]
Therefore,
[tex]undefined[/tex]