Respuesta :

You can find the Midpoint with the following formula:

[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

For this case you have the following endpoints of the segment:

[tex](3,\frac{9}{5});(4,\frac{7}{5})[/tex]

Let's write the fractions in decimal form. To do it, you need to divide the numerator by the denominator. Then:

[tex]\begin{gathered} \frac{9}{5}=1.8 \\ \\ \frac{7}{5}=1.4 \end{gathered}[/tex]

So you can rewrite the endpoints:

[tex](3,1.8);(4,1.4)[/tex]

You can set up that:

[tex]\begin{gathered} x_1=3 \\ x_2=4 \\ y_1=1.8 \\ y_2=1.4 \end{gathered}[/tex]

Now you can substitute these coordinates into the formula:

[tex]M=(\frac{3_{}+4_{}}{2},\frac{1.8_{}+1.4_{}}{2})[/tex]

Evaluating, you get that the Midpoint of the line segment is:

[tex]\begin{gathered} M=(\frac{7}{2},\frac{3.2}{2}) \\ M=(3.5,1.6) \end{gathered}[/tex]

RELAXING NOICE
Relax