To solve this problem, we have to use Hooke's Law.
[tex]F=k\cdot\Delta x[/tex]Where k is the constant of the spring, and x is the displacement we have to find.
According to the problem, the force is 7 times the runner's weight, which means
[tex]F=7\cdot mg[/tex]Where m = 65 kg and g = 9.8 m/s^2. Let's find this force.
[tex]\begin{gathered} F=7\cdot65\operatorname{kg}\cdot9.8\cdot\frac{m}{s^2} \\ F=4459N \end{gathered}[/tex]Then, we use Hooke's Law to find the displacement.
[tex]\begin{gathered} 4459N=2.5\times10^6\cdot\frac{N}{m}\cdot\Delta x \\ \Delta x=\frac{4459N}{2.5\times10^6\cdot\frac{N}{m}} \\ \Delta x=1783.6\times10^{-6}m \\ \Delta x=1.7838\times10^{-3}m \end{gathered}[/tex]But, we have to find the displacement in millimeters. So, let's divide by 1000.
[tex]\begin{gathered} \Delta x=\frac{1.7838\times10^{-3}}{1000}mm \\ \Delta x\approx0.002\operatorname{mm} \end{gathered}[/tex]