Respuesta :

Answer:

The recursive formula is given below as

[tex]\begin{gathered} a_1=7 \\ a_n=-3+a_{(n-1)} \end{gathered}[/tex]

Step 1:

To figure out the value of the forurth term, we will substitute the value of

[tex]n=4[/tex]

By substituting the n=4, we will have

[tex]\begin{gathered} a_{n}=-3+a_{(n-1)} \\ a_4=-3+a_{(4-1)} \\ a_4=-3+a_3 \end{gathered}[/tex]

Step 2:

Calculate the second term and the third term

[tex]\begin{gathered} a_{n}=-3+a_{(n-1)} \\ a_2=-3+a_{(2-1)} \\ a_2=-3+a_1 \\ a_2=-3+7 \\ a_2=4 \\ \\ a_{n}=-3+a_{(n-1)} \\ a_3=-3+a_{(3-1)} \\ a_3=-3+a_2 \\ a_3=-3+4 \\ a_3=1 \end{gathered}[/tex]

Step 3:

Substitute the value of the third term in the equation below

[tex]\begin{gathered} a_{4}=-3+a_{3} \\ a_4=-3+1 \\ a_4=-2 \end{gathered}[/tex]

Hence,

The final answer is

[tex]\Rightarrow-2[/tex]

OPTION C is the right answer

RELAXING NOICE
Relax