Respuesta :

[tex]\frac{16y^{28}}{x^{16}}[/tex]

Explanation:

Exponent rule :

[tex](a*b)^n\text{ = a}^2b^n[/tex]

[tex](32x^{-20}y^{35})^{-\frac{4}{5}}=\text{ 32}^{\frac{4}{5}}(x^{-20})^{\frac{4}{5}}(y^{35})^{\frac{4}{5}}[/tex]

Since

[tex]32^{\frac{4}{5}}\text{ = 16}[/tex]

You can replace it in the equation

[tex]16(x^{-20})^{\frac{4}{5}}(y^{35})^{\frac{4}{5}}[/tex]

Since

[tex]Simplified\text{ : }(x^{-20})^{\frac{4}{5}}\text{ = }\frac{1}{x^{16}}[/tex][tex]Simplified\text{ : \lparen}y^{35})^{\frac{4}{5}}\text{ = }y^{28}[/tex]

You can replace them in the equation

[tex]16*\frac{1}{x^{16}}*y^{28}\text{ = }\frac{16y^{28}}{x^{16}}[/tex]

RELAXING NOICE
Relax